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Memory and imagery in the temporal lobe

Kuniyoshi Sakai and Yasushi Miyashita
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Experimental and clinical studies in primates indicate that visual information
is stored and retrieved by interactions between the temporal association
area and the medial temporal lobe structures. Recent findings from
single-neuron recordings have provided new evidence that perceptual
aspects of the temporal neocortex are closely related to its memory
function based on association. They further suggest that imagery is also
implemented by the same neural mechanism that subserves memory
retrieval.

Current Opinion in Neurobiology 1993, 3:166—170

Introduction

The physical basis of memory and imagery is a funda-
mental and central issue in brain sciences. It is now
widely known that there exist multiple memory sys-
tems, each of which is represented by distinct neural
structures [1¢,23]. In this review, we focus our atten-
tion on the visual declarative (explicit) memory in the
primate temporal lobe. Recent studies on this topic ex-
tend from the molecular to the behavioural level. Single-
neuron recordings provide one promising way to link
these two extremes [4,5,6*]. We will summarize recent
developments and propose a model based on the neural
organization of perception, memory, and imagery.

Encoding, recoding, and decoding

Figure 1a shows a tripartite cognitive system that unifies
memory and imagery. This scheme is based on struc-
tures and functions of the visual memory system for
object recognition (Fig.1b). In the first place, the encod-
ing process proceeds as information flows from a feature
analyzer to a memoty storehouse. The primary visual area
and the prestriate area serve as the feature analyzer for vi-
sual perception (see a review by Van Essen et al [7+]). A
possible candidate for the memory storehouse is the tem-
poral association area. To establish an enduring repre-
sentation in the memory storehouse, a memory controller
is responsible for consolidation. During this process, the
memory code is dynamically reorganized (recoding) by
the interaction between the memory storehouse and the
memory controller. Medial temporal structures including
the hippocampus are regarded as memory controllers,
because of their plasticity (e.g. long-term potentiation),
special neural networks (e.g. autoassociation), and clini-
cal observations (e.g. amnesia after bilateral hippocampal
lesions). A detailed discussion of these topics has been
published elsewhere [4,5].

In the recall process, memory codes are decomposed
into more elementary attributes (decoding) in the mem-

ory storehouse and feature analyzer. As Kosslyn [8] has
pointed out, “imagery consists of brain states like those
that arise during perception, but occurs in the absence
of the appropriate immediate sensory input”. Moreover,
neuropsychological evidence provides support for the
top-down activation of perceptual representations by
higher processing areas in the brain [9,10]. On the neu-
rophysiological evidence described below, we hypothe-
size that imagery is implemented by the decoding mech-
anism, which enables retrieval of stored information. In
summary, the cognitive memory process is divided into a
feature analysis process and a memory control process;
the former consists of encoding and decoding, the latter
corresponds to recoding,

Memory storage in long-term memory
(encoding)

Pair-coding neurons

To examine the possibility that the temporal association
area is a memory storehouse, single-neuron responses
have been recorded from the anterior temporal cor-
tex of monkeys during memory tasks [11]. Recently, a
pair-association task has been applied to the neurophy-
siological study [12¢+]. This task paradigm can directly
assess long-term memory, because monkeys cannot se-
lect a paired associate correctly without memorizing and
recalling pair combinations. One type of neuron (pair-
coding neuron) manifests selective responses to both
paired pictures. The properties of pair-coding neurons
indicate that memory storage is organized such that sin-
gle neurons can participate in the coding of both paired
associates. The result provides new evidence that single
neurons acquire selectivity for visual patterns in the long-
term memory through associative learning. This type of
coding is here termed associative coding, in which the in-
volvement of associative learning is essential for memory
storage.

Abbreviations
ERP-event-related potential; MRI-magnetic resonance imaging; PET—positron emission tomography.
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Fig.1. (@) A model of the cognitive memory system that unifies memory and imagery. See text for an explanation. (b) The visual memory

system for object recognition.

Face-responsive neurons

Neural responses to faces have been extensively stud-
ied in the monkey inferotemporal cortex and part of
the superior temporal sulcus [13-17]. The relationships
between face processing, face recognition impairments
(prosopagnosia), and face-responsive neurons are still in
dispute [18-22]. The associative coding described above
could be applied as an organizing principle for these
neurons. The response selectivity that neurons acquire
through learning is a key feature in establishing associ-
ation among different views of the same face or among
different faces. The facial recognition properties of the
temporal neocortex are thus likely to be a consequence
of its essential memory-related capacity [23].

Non-sensory factors in encoding

Along with long-term memory, there is neurophysiologi-
cal evidence for cortical representation of visual short-
term memory in the temporal association area [24-26].
Some temporal neurons appear to function as adap-
tive mnemonic filters that preferentially pass information
about new stimuli {27+]. This phenomenon could be
closely coupled with priming, as suggested by a recent
positron emission tomography (PET) study [28+*]. The
function of priming is to improve identification of per-
ceptual objects [29]. It would be interesting to investigate
whether encoding and priming share a common neural
mechanism. The possibility that neurons are affected by
non-sensory factors, such as attention to novel stimuli,
should also be taken into account, because “working
memory stands at the crossroads between memory, at-
tention, and perception [30]”.

Retrograde amnesia

Lesion analysis of the temporal association area can test
the possibility that this area is a memory storehouse.

If memories for past events are stored in the tempo-
ral neocortex, its disruption would result in significant
retrograde memory impairment. Clear evidence for this
impairment has been provided by Kapur et al [31e].
They have reported that focal damage in the bilateral an-
terior temporal lobes (with an intact limbic-diencephalic
system) causes marked loss of preoperative memory for
information and events. As for autobiographical memory
loss, there was no firm evidence of any temporal gradi-
ent. Moreover, McCarthy and Warrington [32¢] have re-
ported dissociation within retrograde amnesia, such that
a patient has relatively good knowledge of people as in-
dividuals, but little knowledge of events or what people
have done. Human long-term memory may also be orga-
nized in such distinct meaning systems, which are pre-
sumably modality-specific. Hart and Gordon [33¢] have
further confirmed that vision-based and language-based
knowledge representations are segregated.

Memory retrieval and mental imagery
(decoding)

Pair-recall neurons

In the anterior temporal cortex, another type of neu-
ron (pair-recall neuron) is presumably involved in the
process of memory retrieval [12e]. In each trial of the
pair-association task, a cue picture is presented and the
monkey is required to recognize the paired associate of
that cue after a delay period. Pair-recall neurons exhibit
picture-selective delay activity. This response is closely
coupled with the paired associate that is not actually
seen, but is retrieved by the cue stimulus. There are
two possibilities for the critical process during the de-
lay period. One is that a cue stimulus (retrospective
code) is held in working memory. The other possibility is
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that its paired associate (prospective code) is generated
from stored memories. The increasing delay activity of
the pair-recall neurons is consistent with the claim that
subjects can employ a prospective code. On the ground
that the anterior temporal cortex links the visual system
and the medial temporal lobe memory system, these neu-
rons could play an essential role in memory storage, and
also be activated in memory retrieval.

Memory retrieval and the memory controller

The neuroimaging technique of PET has been success-
fully applied to the study of human memory. Squire
and the group at Washington University Medical Cen-
ter with Raichle [28**] have demonstrated activation of
the right hippocampal region in normal subjects dur-
ing a task of cued-recall (declarative memory). This re-
sult provides clear evidence for selective activation of
the medial temporal lobe memory system in associa-
tion with retrieval of explicit memory. The involvement
of the memory controller in memory retrieval as well as
memory storage is limited to the time span for memory
consolidation. If a much longer interval between memo-
rizing and retrieval is administered in the task, the loci of
activation may differ.

Visual imagery and agnosia

Although the problem of mental imagery is still in dis-
pute between pictorialism (a view that mental images
are quasi-pictorial representations) and descriptionalism
(a view that mental images are linguistic representations),
plentiful evidence indicates that shared mechanisms exist
in imagery and vision (see an excellent review by Tye
[34]). For example, selective loss of imagery has been re-
ported in associative visual agnosia, such that both visual
recognition and mental imagery of living, in contrast with
non-living items, are impaired [35+]. On the ground that
pair-recall neurons can access to the prospective codes of
visual imagery, we propose that imagery is implemented
by the same neural mechanism that subserves memory
retrieval in vision. Accordingly, there is a single set of
visual representations for both object recognition and
imagery. Within a single modality of vision, dissocia-
tion between recognition and imagery arises only from
encoding and decoding processes. Neuropsychological
studies have documented cases of impaired imagery in
which visual recognition is intact. The other aspect of
the double dissociation has been recently revealed by
two studies [36¢,37¢]. These patients can draw objects
well from memory but cannot identify visually presented
material — even their own drawings. The deficit is prob-
ably of central origin at the intermediate level, because
they show intact visual acuity and normal performances
in various standard tests for mental imagery.

Parallel systems of imagery

In accord with multiple memory representations as dis-
cussed above, the cognitive memory system shown in
Fig.1a presumably functions in parallel for each modality-
specific system. Therefore, imagery is likely to be seg-
regated into vision-based and language-based channels.
Furthermore, modality-specific cognitive memory systems

are not totally independent but interconnected with each
other. There is psychological evidence that verbal en-
coding of visual stimuli affects subsequent visual image
processing [38].

Memory consolidation and recognition
(recoding)

Brain activity in recognition

In the human cortex, neuronal activity has been recorded
extracellularly while a patient is performing several tasks.
This opportunity is provided under local anaesthesia for
the treatment of medically intractable epilepsy. One study
has reported changes in neuronal activity related to ob-
ject matching and/or face perception in the right anterior
temporal cortex [39]. Recording of event-related poten-
tials (ERPs) has proved that unilateral temporal lobec-
tomy is associated with abnormally small ERP modula-
tions in a recognition memory task with visually pre-
sented words [40]. In a face recognition task, active
cortical sites were identified by a PET swudy in nor-
mal subjects; the fusiform gyrus and anterior temporal
cortex along with the right parahippocampal gyrus and
adjacent areas [41°]. These areas correspond to the site
of radiologically identified lesions in prosopagnosia pa-
tients [42]. Recently, magnetic resonance imaging (MRI)
of human brain activity, based on intrinsic sensitivity to
cerebral blood flow and blood oxygenation, has been de-
veloped [43¢]. With a precise three-dimensional imaging
technique [44¢], MRI will become a dynamic mapping
tool for exploring memory and imagery in the near fu-
ture.

Anterograde amnesia

There has been accumulating evidence that unilateral
temporal lobectomy affects visual or verbal memory in
epileptic patients [45—47]. These results have been fur-
ther confirmed by case studies of object recognition
impairment due to temporal lobe lesions or epilepsy
[48-50]. It is well known that bilateral medial tempo-
ral lobe lesions cause marked anterograde amnesia that
affects memory consolidation [51]. Further examination
has indicated that forgetting of newly learned visual infor-
mation within long-term memory (tested up to 30-32h)
occurs at a normal rate for amnesic patients [52]. This
comparison was possible when much longer exposure
to test stimuli was allowed to equate amnesic with nor-
mal subjects in the initial retention (10 min). Therefore,
the forgetting rate within long-term memory is not the
key parameter for anterograde amnesia.

Animal models of amnesia

Since the pioneering work by Mishkin [53], animal mod-
els of amnesia with specific brain lesions have provided
substantial evidence for cortical localization of memory
systems. Monkeys with rhinal cortex ablations (the hip-
pocampus and amygdala were left intact) exhibit a se-
vere impairment in visual short-term recognition memory
[54]. Although these animals are impaired in remember-
ing the preoperatively acquired set of object discrimina-
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tions, they can normally learn a new set despite long-term
(24 h) intertrial intervals. In a study of an animal model
of cerebral ischemia, it has been shown that the hip-
pocampus is a focal site of pathological change [55].
These ischemic monkeys exhibit memory impairment
in the recognition memory task, although they show
litle impairment in the delayed (2 days) retention of
object discrimination. Because monkeys with lesions of
the hippocampus and adjacent parahippocampat cortices
are also impaired in the latter object retention task, the
perirhinal area and parahippocampal gyrus may play a
pivotal role in the establishment of long-term memory
needed for this task, as expected from the neural orga-
nization of the visual memory system (Fig.1b).

Conclusions

Complementary and interdisciplinary approaches are cru-
cial in studies of the neurobiology of memory and im-
agery because of the complexity of the problems 1o be
studied. The data obtained from neuronal recording, neu-
roimaging, and lesion analysis are beginning to provide
sufficient evidence to allow constructions of models that
can be tested with further studies. The cognitive mem-
ory system proposed here emphasizes the shared neu-
ral mechanism of memory and imagery. The organizing
principle of associative coding will be useful in constitut-
ing knowledge systems from vast numbers of long-term
memories, which are linked to each other by chains of
association.
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